32 research outputs found

    {\AA}ngstr\"om-scale chemically powered motors

    Full text link
    Like their larger micron-scale counterparts, {\AA}ngstr\"om-scale chemically self-propelled motors use asymmetric catalytic activity to produce self-generated concentration gradients that lead to directed motion. Unlike their micron-scale counterparts, the sizes of {\AA}ngstr\"om-scale motors are comparable to the solvent molecules in which they move, they are dominated by fluctuations, and they operate on very different time scales. These new features are studied using molecular dynamics simulations of small sphere dimer motors. We show that the ballistic regime is dominated by the thermal speed but the diffusion coefficients of these motors are orders of magnitude larger than inactive dimers. Such small motors may find applications in nano-confined systems or perhaps eventually in the cell.Comment: 6 pages, 8 figure

    A novel model to predict the physical state of atmospheric H2SO4/NH3/H2O aerosol particles

    Get PDF
    Colberg CA, Luo BP, Wernli H, Koop T, Peter T. A novel model to predict the physical state of atmospheric H2SO4/NH3/H2O aerosol particles. ATMOSPHERIC CHEMISTRY AND PHYSICS. 2003;3(4):909-924.The physical state of the tropospheric aerosol is largely unknown despite its importance for cloud formation and for the aerosol's radiative properties. Here we use detailed microphysical laboratory measurements to perform a systematic global modelling study of the physical state of the H2SO4/NH3/H2O aerosol, which constitutes an important class of aerosols in the free troposphere. The Aerosol Physical State Model (APSM) developed here is based on Lagrangian trajectories computed from ECMWF (European Centre for Medium Range Weather Forecasts) analyses, taking full account of the deliquescence/efflorescence hysteresis. As input APSM requires three data sets: (i) deliquescence and efflorescence relative humidities from laboratory measurements, (ii) ammonia-to-sulfate ratios (ASR) calculated by a global circulation model, and (iii) relative humidities determined from the ECMWF analyses. APSM results indicate that globally averaged a significant fraction (17-57%) of the ammoniated sulfate aerosol particles contain solids with the ratio of solid-containing to purely liquid particles increasing with altitude (between 2 and 10 km). In our calculations the most abundant solid is letovicite, (NH4)(3)H(SO4)(2), while there is only little ammonium sulfate, (NH4)(2)SO4. Since ammonium bisulfate, NH4HSO4, does not nucleate homogeneously, it can only form via heterogeneous crystallization. As the ammonia-to-sulfate ratios of the atmospheric H2SO4/NH3/H2O aerosol usually do not correspond to the stoichiometries of known crystalline substances, all solids are expected to occur in mixed-phase aerosol particles. This work highlights the potential importance of letovicite, whose role as cloud condensation nucleus (CCN) and as scatterer of solar radiation remains to be scrutinized

    Space Manufacturing: The Next Great Challenge

    Get PDF
    Space manufacturing encompasses the research, development and manufacture necessary for the production of any product to be used in near zero gravity, and the production of spacecraft required for transporting research or production devices to space. Manufacturing for space, and manufacturing in space will require significant breakthroughs in materials and manufacturing technology, as well as in equipment designs. This report reviews some of the current initiatives in achieving space manufacturing. The first initiative deals with materials processing in space, e.g., processing non-terrestrial and terrestrial materials, especially metals. Some of the ramifications of the United States Microgravity Payloads fourth (USMP-4) mission are discussed. Some problems in non-terrestrial materials processing are mentioned. The second initiative is structures processing in space. In order to accomplish this, the International Space Welding Experiment was designed to demonstrate welding technology in near-zero gravity. The third initiative is advancements in earth-based manufacturing technologies necessary to achieve low cost access to space. The advancements discussed include development of lightweight material having high specific strength, and automated fabrication and manufacturing methods for these materials

    Highly accelerated simulations of glassy dynamics using GPUs: caveats on limited floating-point precision

    Full text link
    Modern graphics processing units (GPUs) provide impressive computing resources, which can be accessed conveniently through the CUDA programming interface. We describe how GPUs can be used to considerably speed up molecular dynamics (MD) simulations for system sizes ranging up to about 1 million particles. Particular emphasis is put on the numerical long-time stability in terms of energy and momentum conservation, and caveats on limited floating-point precision are issued. Strict energy conservation over 10^8 MD steps is obtained by double-single emulation of the floating-point arithmetic in accuracy-critical parts of the algorithm. For the slow dynamics of a supercooled binary Lennard-Jones mixture, we demonstrate that the use of single-floating point precision may result in quantitatively and even physically wrong results. For simulations of a Lennard-Jones fluid, the described implementation shows speedup factors of up to 80 compared to a serial implementation for the CPU, and a single GPU was found to compare with a parallelised MD simulation using 64 distributed cores.Comment: 12 pages, 7 figures, to appear in Comp. Phys. Comm., HALMD package licensed under the GPL, see http://research.colberg.org/projects/halm

    CD40L Deficiency Attenuates Diet-Induced Adipose Tissue Inflammation by Impairing Immune Cell Accumulation and Production of Pathogenic IgG-Antibodies

    Get PDF
    BACKGROUND: Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L--an established marker and mediator of cardiovascular disease--induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo. METHODOLOGY/PRINCIPAL FINDINGS: WT or CD40L(-/-) mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L(-/-) mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L(-/-) mice. However, CD40L(-/-) mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L(-/-) mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels. CONCLUSION: We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease

    Tumor Necrosis Factor Receptor Associated Factor 6 Is Not Required for Atherogenesis in Mice and Does Not Associate with Atherosclerosis in Humans

    Get PDF
    BACKGROUND: Tumor necrosis factor receptor-associated factors (TRAFs) are important signaling molecules for a variety of pro-atherogenic cytokines including CD40L, TNF alpha, and IL1beta. Several lines of evidence identified TRAF6 as a pro-inflammatory signaling molecule in vitro and we previously demonstrated overexpression of TRAF6 in human and Murine atherosclerotic plaques. This study investigated the role of TRAF6-deficiency in mice developing atherosclerosis, a chronic inflammatory disease. METHODOLOGY/PRINCIPAL FINDINGS: Lethally irradiated low density lipoprotein receptor-deficient mice (TRAF6(+/+)/LDLR(-/-)) were reconstituted with TRAF6-deficient fetal liver cells (FLC) and consumed high cholesterol diet for 18 weeks to assess the relevance of TRAF6 in hematopoietic cells for atherogenesis. Additionally, TRAF6(+/-)/LDLR(-/-) mice received TRAF6-deficient FLC to gain insight into the role of TRAF6 deficiency in resident cells. Surprisingly, atherosclerotic lesion size did not differ between the three groups in both aortic roots and abdominal aortas. Similarly, no significant differences in plaque composition could be observed as assessed by immunohistochemistry for macrophages, lipids, smooth muscle cells, T-cells, and collagen. In accord, in a small clinical study TRAF6/GAPDH total blood RNA ratios did not differ between groups of patients with stable coronary heart disease (0.034+/-0.0021, N = 178), acute coronary heart disease (0.029+/-0.0027, N = 70), and those without coronary heart disease (0.032+/-0.0016, N = 77) as assessed by angiography. CONCLUSION: Our study demonstrates that TRAF6 is not required for atherogenesis in mice and does not associate with clinical disease in humans. These data suggest that pro- and anti-inflammatory features of TRAF6 signaling outweigh each other in the context of atherosclerosis
    corecore